User Guide to 1lunizx,
Comprehensive Unix APl Module for Lua

William Ahern

June 23, 2022

Contents

Contents
1 About

2 Dependencies

2.1 Operating Systems L
2.2 Libraries e
2.21 Luab.1,5.2,5.3 e e
2.3 GNU Make
3 Installation
3.1 Buaildingo e
3.1.1 Targets e e e
3.2 Installing oL L e
3.2.1 Targets
4 Usage

4.1 Modules
411 unix .o e
environ[]) clock_gettime

accept) close

access) closedir

alarm) closelog
arc4random 6 compl
arc4random buf 6 connect
arc4random_stir 6 dup
arc4random_uniform. . . 6 dup2

bind 0L 6 dup3

bitand 6 execve

bitor 6 execl

chdir 6 execlp

chmod 7 eXecvp

chown 7 exito

chroot 7 exito

clearerr 7 faccessat

© © © © 00 00 0 00 00 00 I 3393

fchmod . .
fchown . .
fentl L.
fdatasync
fdopen . .
fdopendir
fdup
feof
ferror ..
fgetc . ..
fileno . .
flockfile
fnmatch . .
fstat . . .
fstatat . .
fsync . ..
ftrylockfil
funlockfile
fopen . ..
fopenat . .
fpathconf

fpipe . ..

e

gai_strerror

getaddrinfo
getc
getcwd . .
getegid . .
getenv . .
geteuid . .
getgid . .
getgrgid .
getgrnam .
getgroups
gethostname
getifaddrs
getmode . .
getnameinfo
getopt . .
getpeername
getpgid . .
getpgrp . .
getpid . .
getppid . .
getprogname

O © © © © ©

10
10
10
10
10
10
10
10
10
10
10
11
11
11
11
11
11
11
11
12
12
12
13
13
13
13
13
14
14
14
15
15
15
15
15
15
15
15
15

ii

getpwnam
getpwuid
getrlimi
getrusag
getsockn
gettimeo
getuid
grantpt
ioctl .
isatty
issetugi
kill . .
LOG_MASK
LOG_UPTO
lchown

lockf .

mkdir .
mkdirat
mkfifo
mkfifoat
mkpath
open . .
openat
opendir
openlog
pathconf
pipe . .
poll . .

t oo
e ...
ame
fday

d

posix_fadvise

posix_fallocate.

posix.openpt

posix_fopenpt

pread .
ptsname
pwrite
raise .

readlink
readlink
realpath

at

15
16
16
16
16
16
17
17
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
19
20
20
20
20
20
20
20
20
21
21
21
21
21
21
22

4.1.2

4.1.3

regcomp
regerror
regexec
regfree
rename
renameat
rewinddi
rmdir .
S_ISBLK
S_ISCHR
S_ISDIR
S_ISFIFO
S_ISREG
S_ISLNK

setegid
seteuid
setenv
setgid
setgroup
setlocal
setlogma
setpgid
setrlimi
setsid
setsocko
setuid
shutdown
sigactio

unix.dir

dir:file
dir:read

r

S ...
e ...
sk

t oo

Pt

n

S

22
22
22
22
22
23
23
23
23
23
23
24
24
24
24
24
24
24
24
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
27

33
33
34

iii

sigfi
sigem
sigad
sigde

llset
ptyset
dset
lset

sigismember

sigpr

ocmask

sigtimedwait

sigwa
sleep
socke
socke
stat

strer
strsi
symli
symli
sysco
syslo
tcget
tcget
tcset

it ..o
t oo
tpair
Tor
gnal
nk
nkat
nf

g

oJ=5 s o J
sid

PETP - -

timegm

trunc

uname
unlin
unlin
unloc
unset

write

dir:r
dir:c

ioctl

ate

kK oo
kat
kpt
env

ewind
lose

27
27
27
28
28
28
28
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
31
31
31
32
32
32
32
32
32
33
33

33

33
33

33

34
34
34

malloc 34

5 Appendix

5.1
5.2

MEemcpy 34
memset 34
mlock 34
mlockall 34
mmap 34
munlock 34

setrecvaddr

strevents

v

munlockall

munmap
realloc

reallocarray
setsockopt

strlen
strnlen

34
34
35
35
35
35
35

1 About

lunix is a bindings library module to common Unix system APIs. The module is regularly tested
with Linux/glibe, Linux/musl, OS X, FreeBSD, NetBSD, OpenBSD, Solaris, and AIX. The best
way to describe it is in contradistinction to luaposix, the most popular bindings module for Unix
APIs in Lua.

Thread-safety Unlike luaposiz, it strives to be as thread-safe as possible on the host platform.
Interfaces like strerror_r and 0_CLOEXEC are used throughout. The module even includes a novel
solution for the inherently non-thread-safe umask system call, where calling umask from one thread
might result in another thread creating a file with unsafe or unexpected permissions.

POSIX Extensions Unlike luaposix, the library does not restrict itself to POSIX, and emulates
an interface when not available natively on a supported platform. For example, the library provides
arc4random (absent on Linux and Solaris), clock_gettime (absent on OS X), and a thread-safe
timegm (absent on Solaris).

Leak-safety Unlike luaposix, the library prefers dealing with FILE handles rather than raw
integer descriptors. This helps to mitigate and prevent leaks or double-close bugs—a common
source of problems in, e.g., asynchronous applications. Routines like chdir, stat, and opendir
transparently accept string paths, FILE handles, DIR handles, and raw integer descriptors.

2 Dependencies

2.1 Operating Systems

lunix targets modern POSIX-conformant and POSIX-aspiring systems. But unlike luaposix it
branches out to implement common GNU and BSD extensions. All interfaces are available on all
supported platforms, regardless of whether the platform provides a native interface.

I try to regularly compile and test the module against recent versions of OS X, Linux/glibc, Lin-
ux/musl, FreeBSD, NetBSD, OpenBSD, Solaris, and AIX.

2.2 Libraries

2.2.1 Lua 5.1, 5.2, 5.3

lunix targets Lua 5.1 and above.

2.3 GNU Make

The Makefile requires GNU Make, usually installed as gmake on platforms other than Linux or
OS X. The actual Makefile proxies to GNUmakefile. As long as gmake is installed on non-GNU
systems you can invoke your system’s make.

3 Installation

The module is composed of a single C source file to simplify compilation across environments.
Because there several extant versions of Lua often used in parallel on the same system, there are
individual targets to build and install the module for each supported Lua version. The targets all
and install will attempt to build and install both Lua 5.1 and 5.2 modules.

Note that building and installation and can accomplished in a single step by simply invoking one
of the install targets with all the necessary variables defined.

3.1 Building

There is no separate . /configure step required.! System introspection and feature detection occurs
during compile-time. The “configure” make target can be used to cache the build environment
so one needn’t continually use a long command-line invocation.

All the common GNU-style compiler variables are supported, including CC, CPPFLAGS, CFLAGS,
LDFLAGS, and SOFLAGS. Note that you can specify the path to Lua 5.1, Lua 5.2, and Lua 5.3
include headers at the same time in CPPFLAGS; the build system will work things out to ensure
the correct headers are loaded when compiling each version of the module.

3.1.1 Targets

all
Build modules for Lua 5.1 and 5.2.

allb.1
Build Lua 5.1 module.

all5.2
Build Lua 5.2 module.

all5.3
Build Lua 5.3 module.

3.2 Installing

All the common GNU-style installation path variables are supported, including prefix, bindir,
libdir, datadir, includedir, and DESTDIR. These additional path variables are also allowed:

luablpath
Install path for Lua 5.1 modules, e.g. $(prefix)/share/lua/5.1

! Optional autoconf configuration is currently being tested. Run ./bootstrap to build the ./configure script

luablcpath
Install path for Lua 5.1 C modules, e.g. $(prefix)/1lib/lua/5.1

luab2path
Install path for Lua 5.2 modules, e.g. $(prefix)/share/lua/5.2

luab2cpath
Install path for Lua 5.2 C modules, e.g. $(prefix)/1ib/lua/5.2

luab3path
Install path for Lua 5.3 modules, e.g. $(prefix)/share/lua/5.3

luab3cpath
Install path for Lua 5.3 C modules, e.g. $(prefix)/1ib/1lua/5.3

3.2.1 Targets

install
Install modules for Lua 5.1 and 5.2.

installb.1
Install Lua 5.1 module.

install5.2
Install Lua 5.2 module.

install5.3
Install Lua 5.3 module.

4 Usage

4.1 Modules

4.1.1 unix

The main lunix module through which most routines and constants are exported. These bindings
are type-safe—none operate on or return memory addresses (pointers). For lower-level bindings,
see the unix.unsafe submodule.

environ[]

Binding to the process-global environ array using metamethods.

__index
Utilizes the internal getenv binding.

__newindex
Utilizes the internal setenv binding.

__pairs
Takes a snapshot of the environ table to be used by the returned iterator for key—value loops.
Other than Solaris', no system supports thread-safe access of the environ global.

__ipairs
Similar to __pairs, but the iterator returns an index integer as the key followed by the envi-
ronment variable as a single string—“FOO=BAR”.

__call
Identical to the __pairs metamethod, to be used to create an iterator directly as Lua 5.1
doesn’t support __pairs.

accept (filel, flags])
FIXME.

accept (path, mode)
FIXME.

alarm(seconds)

FIXME.

!See https://blogs.oracle.com/pgdh/entry/caring_for_the_environment_making

arc4random()

Returns a cryptographically strong uniformly random 32-bit integer as a Lua number. On Linux
the RANDOM_UUID sysctl feature is used to seed the generator if available; or on more recent Linux
and Solaris kernels the getrandom interface.? This avoids fiddling with file descriptors, and also
works in a chroot jail. On other platforms without a native arc4random interface, such as Solaris
11.2 or earlier, the implementation must resort to /dev/urandom for seeding.

Note that unlike the original implementation on OpenBSD, arc4random on some older platforms
(e.g. FreeBSD prior to 10.10) seeds itself from /dev/urandom. This could cause problems in chroot
jails.

arc4random_buf (n)

Returns a string of length n containing cryptographically strong random octets using the same
CSPRNG underlying arc4random.

arc4random stir()

Stir the arcdrandom entropy pool using the best available resources. This normally should be

unnecessary.

arc4random_uniform([n])

Returns a cryptographically strong uniform random integer in the interval [0, n — 1] where n < 232

If n is omitted the interval is [0,2%2 — 1] and effectively behaves like arc4random.
bind (file[, sockaddr])
FIXME.

bitand(z,)
FIXME.

bitor(z, %)
FIXME.

chdir (dir)

If dir is a string, attempts to change the current working directory using chdir. Otherwise, if dir is
a FILE handle referencing a directory, or an integer file descriptor referencing a directory, attempts
to change the current working directory using fchdir.

Returns true on success, otherwise returns false, an error string, and an integer system error.

2Some Linux distributions, such as Red Hat, disable sysctl.

chmod (file, mode)

file may be either be a string path for use with chmod, or a FILE handle or integer file descriptor
for use with fchmod. mode may be an integer value or symbolic string.

Returns true on success, otherwise returns false, an error string, and an integer system error.

chown(file[, uidl [, gid])

file may be either be a string path for use with chown, or a FILE handle or integer file descriptor
for use with fchown. wid and gid may be integer values or symbolic string names.

Returns true on success, otherwise returns false, an error string, and an integer system error.

chroot (path)
Attempt to chroot to the specified string path.

Returns true on success, otherwise returns false, an error string, and an integer system error.

clearerr(fh)
FIXME.

clock_gettime (id)

id should be the string “realtime” or “monotonic”, or the integer constant CLOCK_REALTIME
or CLOCK_MONOTONIC.

Returns a time value as a Lua floating point number, otherwise returns nil, an error string, and
an integer system error.

close(fd)
FIXME.

closedir(dir)

Closes the DIR handle, releasing the underlying file descriptor.

closelog()

Closes any (internal) file descriptors opened by openlog or syslog.

compl(x)
FIXME.

connect (file[,sockaddr])

FIXME.

dup(filel, flags])

file may be either a FILE handle or integer file descriptor. flags is an optional file status flags
integer. If available, F_DUPFD_CLOEXEC is used to ensure atomic setting of any 0_CLOEXEC flag.

Returns an integer descriptor on success, otherwise nil, an error string, and an integer system
error, an error string, and an integer system error.

dup2(file, filel, flagsl)

file may be either a FILE handle or integer file descriptor. flags is an optional file status flags
integer. If available, either dup3 or F_DUP2FD_CLOEXEC is used to ensure atomic setting of any
0_CLOEXEC flag.

Returns an integer descriptor on success, otherwise nil, an error string, and an integer system
error.

dup3(file, file, flags)

Like dup2, except flags is not optional. This binding will not exist if dup3 was not available at
compile-time, whereas the dup2 binding is best-effort regarding atomically setting 0_CLOEXEC.

execve(path[, argvl[, env])

Executes path, replacing the existing process image. path should be an absolute pathname as the
$PATH environment variable is not used. argv is a table or ipairs-iterable object specifying the
argument vector to pass to the new process image. Traditionally the first such argument should
be the basename of path, but this is not enforced. If absent or empty the new process image will
be passed an empty argument vector. env is a table or ipairs—iterable object specifying the new
environment. If absent or empty the new process image will contain an empty environment.

On success never returns. On failure returns false, an error string, and an integer system error.

execl(path, ...)

Executes path, replacing the existing process image. The $PATH environment variable is not used.
Any subsequent arguments are passed to the new process image. The new process image inherits
the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

execlp(file, ...)

Executes file, replacing the existing process image. The $PATH environment variable is used to
search for file. Any subsequent arguments are passed to the new process image. The new process
image inherits the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

execvp(filel, argvl)

Executes file, replacing the existing process image. The $PATH environment variable is used to
search for file. Any subsequent arguments are passed to the new process image. The new process
image inherits the current environment table.

On success never returns. On failure returns false, an error string, and an integer system error.

_exit ([status])

Exits the process immediately without first flushing and closing open streams, or calling atexit
handlers. If status is boolean true or false, exits with EXIT_SUCCESS or EXIT_FAILURE, re-
spectively. Otherwise, status is an optional integer status value which defaults to 0 (EXIT_SUCCESS).

exit ([status])

Like _exit, but first flushes and closes open streams, and calls atexit handlers.

faccessat(fd, path, mode, flags)
FIXME.

fchmod (file, mode)

See chmod.

fchown(filel[, widl[, g¢id])

See chown.

fentl(fileldirl fd, ...)
FIXME

fdatasync (fileldir| fd)
FIXME

fdopen(fileldir| fd[, model)
FIXME

fdopendir (fileldir| fd)
FIXME

fdup(filel, flags]l)

file may be either a FILE handle or integer file descriptor. flags is an optional integer or symbolic
mode.

Returns a FILE handle on success, otherwise returns nil, an error string, and an integer system
erTor.

feof (file)
FIXME.

ferror(file)
FIXME.

fgetc(file)
FIXME.

fileno(fileldir| fd)

Resolves the specified FILE handle or DIR handle to an integer file descriptor. An integer descriptor
is returned as-is.

flockfile(fh)
Locks the FILE handle fh, blocking the current thread if already locked. Returns true.

This function only works on FILE handles and not DIR handlers or integer descriptors.

fonmatch(pattern, subject, flags)
FIXME.

fstat (pathl fileldir| fd[, field ...1)

See stat.

fstatat(fd, path, flags[, field ...1)

Like stat. See also openat.

fsync(fileldir| fd)
FIXME

ftrylockfile(fh)

Attempts to lock the FILE handle fh. Returns true on success or false if fh was locked by
another thread.

10

funlockfile(fh)
Unlocks the FILE handle fh. Returns true.

fopen(path| fileldir| fd[, model [, perm])

Similar to the open binding except returns a FILE handle. Unlike Lua’s io.open routine, any
string mode is passed directly to the fopen interface and thus supports all local extensions. One
consequence of this is that if mode is a string then perm is ignored. To ensure that fopen is invoked
both path and mode should be strings, otherwise the semantics are emulated by translating mode
to an integer bitfield and invoking open.

Returns a FILE handle on success, otherwise nil, an error string, and an integer system error.

The difference between calling fopen versus open +fdopen is that the fopen binding ensures that
a descriptor is not leaked if fdopen fails or throws an exception.

fopenat (fd, pathl[, model [, perml)
See openat and fopen.

Returns a FILE handle on success, otherwise nil, an error string, and an integer system error.

fpathconf (fd, name)
FIXME.

fpipe ([model)
FIXME.

fork()

Forks a new process. On success returns the PID of the new process in the parent and the integer
0 in the child. Otherwise returns false, an error string, and an integer system error.
gai_strerror(error)

Returns an error string corresponding to the specified EAT integer error.

getaddrinfo(host, [port], [hints][, field ...1)

Returns an iterator over the addresses resolved for host and port. If a resolution error occurred,
returns nil, an error string, an EAI error integer, and a system error integer (if EAI error is
EAI,SYSTEM) .

host should be a string host name. port is an optional port number which defaults to 0.

hints is an optional table controlling the manner and scope of resolution. For example, if a family is
not specified the resolver will return a unique result for each address-family combination supported
by the system. The following fields are supported:

11

flags
Bitwise or of one of more of AI_PASSIVE, AI_CANONNAME, AT_NUMERICHOST, AI_NUMERICSERYV,
AT_ADDRCONFIG, AI_V4MAPPED (if supported), and AI_ALL (if supported).

family
AF_UNSPEC, AF_INET, or AF_INET6.

.socktype
SOCK_DGRAM, SOCK_STREAM, or SOCK_SEQPACKET (if supported).

.protocol
IPPROTOIP, IPPROTO_IPV6, IPPROTO_TCP, IPPROTO_UDP, IPPROTO_ICMP, or IP-
PROTO_RAW (if supported).

If no fields are specified, the iterator returns a table with the following fields:
family

See description of family for hints table.

.socktype
See description of socktype for hints table.

.protocol
See description of protocol for hints table.

.addr
IP address as human-readable string.

.canonical

Canonical hostname of IP address (if AL CANONNAME flag was specified in hints table).

.port
Integer port.

If fields are specified, the iterator returns a list of fields in the order specified.

getc(file)
FIXME.

getcwd)
FIXME.

getegid ()

Returns the effective process GID as a Lua number.

12

getenv(name)
Returns the value of the environment variable name as a string, or nil if it does not exist.

Not thread-safe on any system other than Solaris® and NetBSD*. Linuzx/glibc getenv is thread-
tolerant as pointers returned from getenv will remain valid throughout the lifetime of the process,
but Linuz/glibc will write over existing values on update so concurrent use with setenv could lead
to inconsistent views.

geteuid ()

Returns the effective process UID as a Lua number.

getgid()

Returns the real process GID as a Lua number.

getgrgid(gid[, ...1)

See getgrnam.

getgrnam(grpl, ...]1)

grp is an integer GID or string symbolic group name suitable for use by either getgrgid(3) or
getgrnam(3), respectively.

If no other arguments are specified, on success returns a table with the following fields

.name
Symbolic group name as a string, or nil if absent.

.passwd
Password information as a string, or nil if absent.

.gid
GID as integer.

.mem
Array of supplementary group names, or nil if absent.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. “members” may be used as an alternative to “mem”. Note that the
return value may be nil if the field was absent.

If no group was found, returns nil followed by the error string “no such group”.

If a system error occurred, returns nil, an error string, and an integer system error.

3See https://blogs.oracle.com/pgdh/entry/caring_for_the_environment_making
“NetBSD provides getenv_r(3)

13

getgroups ()

Returns table of supplementary GIDs on success, otherwise nil, an error string, and an integer
system error.

gethostname ()

Returns system hostname as string on success, otherwise nil, an error string, and an integer system
error.

getifaddrs([...])

Returns an iterator over the current system network interfaces on success. If a system error oc-
curred, returns nil, an error string, and an integer system error.

If no arguments are specified, each invocation of the iterator returns a table with the following
fields

.name
Interface symbolic name as a string.

flags
Interface flags as an integer bit field.

SJamily
Interface address family as an integer.

.addr
Interface address as a string, or nil if of an unknown address family.

.netmask
Interface address netmask as a string, or nil if absent or of an unknown address family.

.prefixlen
Interface address prefixlen as an integer, or nil if absent or of an unknown address family.

.dstaddr

Interface destination address if point-to-point, or nil if absent or of an unknown address
family.

.broadaddr
Interface broadcast address, or nil if absent or of an unknown address family.

If arguments are given, each field specified (as named above) is returned as part of the return value
list on every invocation of the iterator.

14

getmode (model, omodel)

The getmode interface derives from the routine so-named in almost every chmod (1) utility imple-
mentation and which exposes the parser for symbolic file permissions.

mode should be a symbolic mode value with a valid syntax as described by POSIX within the
chmod (1) utility man page. If specified, omode should be an integer or a string in decimal, hex-
idecimal, or octal notation, and represents the original mode value used by the symbolic syntax for
inheritance.

getnameinfo (sockaddr [, flagsl)
FIXME.

getopt (args, optstring)
FIXME.

getpeername (file)

FIXME.

getpgid()
FIXME.

getpgrp O
FIXME.

getpid ()
Returns the process ID as a Lua number.

getppid()

Returns the parent process ID as a Lua number.

getprogname ()

Returns the program name as a string, otherwise nil, an error string, and an integer system error.

getpwnam(usr[, ...]1)

usr is an integer UID or string symbolic user name suitable for use by either getpwuid(3) or
getpwnam(3), respectively.

If no other arguments are specified, on success returns a table with the following fields

.name
Symbolic user name as a string, or nil if absent.

15

.passwd
Password information as a string, or nil if absent.

.uid
UID as integer.

.gid
Primary GID as integer.

dir
Home directory path, or nil if absent.

.shell
Login shell path, or nil if absent.

.gecos
Additional user information, or nil if absent.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. Note that the return value may be nil if the value was empty in the
database.

If no user was found, returns nil followed by the error string “no such user”.

If a system error occurred, returns nil, an error string, and an integer system error.

getpwuid (uid[, ldots])

See getpwnam.

getrlimit ([what])
FIXME.

getrusage ([whol)
FIXME.

getsockname (file)

FIXME.

gettimeofday ([ints])

Returns the current time as a Lua floating point number or, if ints is true, as two integers repre-
senting seconds and microseconds.

On failure returns nil, an error string, and an integer system error.

16

getuid)

Returns the real process UID as a Lua number.

grantpt (file)
FIXME.

ioctl(file, ...)

FIXME.

isatty(file)
FIXME.

issetugid()

Returns true if the process environment is considered unsafe because of setuid, setgid, or similar
operations, otherwise false.

kill(pid, signo)

Sends signal signo to process or process group pid. Returns true on success, otherwise false, an
error string, and an integer system error.

LOG_MASK (priority)

Derive a setlogmask priority mask integer bitfield that matches all log messages of the specified
priority integer constant. The mask passed to setlogmask is usually derived by OR’ing multiple
single-priority masks.

LOG_UPTO (priority)

Derive a setlogmask priority mask integer bitfield that matches all log message with greater or
equal priority.

lchown(pathl[, wid] [, gid])

FIXME.

link(pathl, path2)
Creates a new directory entry at path2 as a hard link to pathl.

Returns true on success, otherwise false, an error string, and an integer system error.

listen(fd[, backlog])
FIXME.

17

lockf (file, emd[, sizel)
FIXME.

lseek(file, of fset, whence)
FIXME.

1stat(path[, field ...1)

Identical to stat, except only accepts string paths and uses the 1stat system call.

mkdir (path[, model)

Create a new directory at path. mode, if specified, should be a symbolic mode string following the
POSIX syntax as described by the chmod (1) utility man page. Otherwise, mode defaults to 0777.
In either case, mode is masked by the process umask.

Returns true on success, otherwise false, an error string, and an integer system error.

mkdirat (fd| fileldir, path[, model)

Similar to mkdir except interprets path relative to the specified open directory file descriptor, fd,
or a FILE handle or DIR handle that wraps such a descriptor.

Returns true on success, otherwise false, an error string, and an integer system error.

mkfifo(path[, model)

Create a FIFO at path. mode, if specified, should be an integer bitfield or symbolic string following
the POSIX syntax as described by the chmod (1) utility man page. Otherwise, mode defaults to
0666.

Returns true on success, otherwise false, an error string, and an integer system error.

mkfifoat (fdl| fileldir, path[, model)

Similar to mkfifo except interprets path relative to the specified open directory file descriptor, fd,
or a FILE handle or DIR handle that wraps such a descriptor.

Returns true on success, otherwise false, an error string, and an integer system error.

mkpath(path[, model [, imodel)

Like mkdir, but also creates intermediate directories if missing. imode is the mode for intermediate
directories. Like mode it is restricted by the process umask, but unlike mode the user write bit is
unconditionally set to ensure the full path can be created.

Returns true on success, otherwise false, an error string, and an integer system error.

18

open(path| fileldir| fd[, model [, perml)

Open the specified file. Normally a string path is specified. If a FILE handle, DIR handle, or
file descriptor are specified the library will attempt to use system extensions to create a new file
descriptor. Unlike dup this descriptor will not share status flags or file position cursors. (This
will only work on Linux, NetBSD, and Solaris with procfs support; or on macOS using the special
“/.vol” namespace. macOS and Solaris only support re-opening file system objects this way, not
pipes or sockets. The BSD “/dev/fd” namespace has semantics equivalent to dup, except on Linux
where “/dev/fd” is a symlink to “/proc/self/fd”.)

mode specifies the open flags as an integer bitfield (e.g. 0_CREAT|0_RDWR, 0_RDONLY | 0_CLOEXEC, etc)
or a symbolic string (e.g. “w+x”). If unspecified defaults to 0, which normally equals 0_RDONLY.

perm specifies the file creation mode bits as an integer bitfield or a symbolic string (e.g. “ug+rw,o+1”,
equivalent to 0644). If unspecified defaults to 0666.°

Returns an integer file descriptor on success, otherwise nil, an error string, and an integer system
€error.

openat (fileldir| fd, path[, model [, perm])
Similar to open except the first parameter should resolve to an open directory file descriptor.

Returns an integer file descriptor on success, otherwise nil, an error string, and an integer system
€error.

opendir (path| fileldir| fd)

Creates a DIR handle for reading directory entries. Caller may specify a path string, a Lua FILE
handle, another DIR handle, or an integer descriptor. In the latter three cases, the underlying
descriptor is duplicated using dup3 (if available) or dup2 because there’s no safe way to steal the
descriptor from existing FILE or DIR handles. But it’s not a good idea to mix reads between the
two original and duplicated descriptors as they will normally share the same open file entry in the
kernel, including the same position cursor.’

Returns a DIR handle on success, otherwise nil, an error string, and an integer system error.

openlog(ident[, logoptl, facilityl])

Set process attributes that affect subsequent calls to syslog. ident is string prefix for log messages,
logopt an integer bitfield of flags (e.g. LOG_PID, and facility an integer constant (e.g. LOG_LOCAL1,
LOG_MAIL) used for tagging and routing of messages.

pathconf (path, name)
FIXME.

5Note that the kernel will apply the process-global file mode creation mask to the permission bits. See umask.
5In the future may add ability to open /proc/self/fd or /dev/fd entries, which should create a new open file entry.

19

pipe(mode)
FIXME.

poll(fds[, timeout])

Polls on the file descriptor events specified by fds. Following the luaposix API, fds is a table
indexed by integer file descriptors, each table entry another table with the integer bitmak field
“events” specifying desired events to poll. timeout is an optional floating-pointing value specifying
the number of seconds (and fractions thereof) to block. A missing or nil timeout will wait forever;
a negative value is assumed to be the result of arithmetic underflow and effects a 0-second timeout.”

On success updates the “revents” field for each descriptor entry in fds and returns the number of
ready descriptors; otherwise nil, an error string, and an integer system error.

local fds = { [fd] = { events = unix.POLLIN } }
local nr = assert(unix.poll(fds, 3.0))
for fd, t in pairs(fds) do
-- see Appendix for strevents implementation
print (fd, strevents(t.events), strevents(t.revents))
end

posix_fadvise(file, of fset, len, advice)

FIXME.

posix_fallocate(file, of fset, len)
FIXME.

posix_openpt ([flags])
FIXME.

posix_fopenpt ([flags])
FIXME.

pread(file, size, of fset)

Reads up to size bytes of data from file at of fset. file may be either a FILE handle or integer
file descriptor.

Returns a string on success, otherwise nil, an error string, and an integer system error.

ptsname (file)
FIXME.

"In other words, do not pass —1 as-if directly calling the underlying system call.

20

pwrite(file, data, of fset)

Writes data to file at of fset. file may be either a FILE handle or integer file descriptor.
Returns an integer representing the number of bytes written (which may be less than #data) on
success, otherwise nil, an error string, and an integer system error.

raise(signo)

Sends signal signo to calling thread. Returns true on success, otherwise false, an error string,
and an integer system error.

read(file, size)

Reads up to size bytes of data from file. file may be either a FILE handle or integer file descriptor.

Returns a string on success, otherwise nil, an error string, and an integer system error.

readdir(dir[, field ...1)

Reads the next directory entry. If no field arguments are specified, on success returns a table with
the following fields

.name
Name of file.

.ino
Inode of file.

.type
A numeric value describing the file type, similar to the “mode” field returned by stat, except
without any permission bits present. You can pass this value to S_ISREG, S_ISDIR, S_ISFIFO,
etc.

Available on Linux and BSD derivatives, but, e.g., will be nil on Solaris.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list. Note that the return value may be nil if the value was unavailable.

If the end of directory entries has been reached, returns nil.

If a system error occurred, returns nil, an error string, and an integer system error.

readlink (path)
FIXME.

readlinkat (fd, path)
FIXME.

21

realpath(path)
FIXME.

recv(file, sizel, flags])

Receives up to size bytes of data from the socket file. file may be either a FILE handle or
integer file descriptor. flags is an optional integer containing bitwise socket receive flags (e.g.
MSG,WAITALL).

Returns a string on success, otherwise nil, an error string, and an integer system error.

recvfrom(file, sizel, flags])

Like recv. Returns a string and sockaddr on success; otherwise nil, an error string, and an integer
system error.

recvfromto(file, sizel, flags])

Like recvfrom. Returns a string, source sockaddr, and destination sockaddr on success; otherwise
nil, an error string, and an integer system error.

This interface is useful for replying to UDP packets with the same source address received on,
without having to enumerate, bind, and listen on multiple interfaces. Because interfaces can go
down and come up dynamically, binding on multiple interfaces is complex and difficult. See also
the reciprocal interface, sendtofrom.

NOTES:

e Not all platforms support this interface. AIX (confirmed 7.1) supports IPv6 but not IPv4.

e The descriptor must be initialized by enabling a specialized socket option. The option varies
by platform and socket protocol family. See setrecvaddr example in Appendix.

regcomp (pattern, cflags)

Compile string pattern according to the specified cflags integer bitfield. Returns a userdata value
wrapping a regex_t object on success, otherwise nil, an error string, and an integer error code.
The error codes are those from <regex.h>, not <errno.h>.

The “nsub” field of the returned userdata value evaluates to the “re_nsub” field value of the C
regex_t object. Note that the userdata value contains additional metadata and members for
internal use.

regerror(error[, regex])

Returns a string describing the specified integer error code. Optional regez is a userdata value as
returned by regcomp and may be used by some systems to generate more informative error strings.

This routine should usually not be needed as the return discipline of regcomp and regexec includes
the string representation of any error conditions.

22

regexec(regex, subject[[, initl [, tablel, eflagsl)

Attempt to match regex to the subject string. eflags is an integer bitfield of flags that modify
the matching behavior. init is an integer position (1-indexed) for matching a suffix of subject,
as with string.find. To more closely match the calling convention of the C routine, parameter
disambiguation favors e flags; init can only be specified if e flags or table are also specified.

On a success, subexpressions (or the entire matching expression if no subexpressions) are returned
as a list, as with string.find. Matching subexpressions are returned as string values, but non-
matching subexpressions as nil. This is necessary to disambiguate zero-length matches from
alternatives not part of the actual match.

If table is provided the behavior is a more literal binding to the C routine—table is treated as
an array of matches (i.e. regmatch t structures) in subject that record the 0-indexed start offset
(“so” field) and end offset (“eo” field) in subtables. Offsets of the entire matching expression are
stored at index 0, and of subexpressions starting at index 1. As in C, offsets of non-matching
subexpressions are represented with the constant -1. Any existing subtables are used in situ to
minimize generation of garbage. Any other array indices, and any fields other than “so” and “eo”
in match subtables, are left unmodified.

On failure (including a non-match), nil, an error string, and an integer error code are returned.
The error code REG_NOMATCH represents a non-match condition. table, if provided, is not modified.
regfree(regex)

Explicitly destroy the regex userdata value. The regex __gc metamethod performs this implicitly
in an idempotent manner, but an attempt to invoke regfree on regex more than once throws an
error.

rename (from, to)

Renames the file from to to. The paths must reside on the same device.

Returns true on success, otherwise false, an error string, and an integer system error.

renameat (fromfd, from, tofd, to)

Similar to rename except interprets the string paths from and to relative to the respective open
directory file descriptor, fromfd and tofd, respectively. fromfd and tofd should be integer file
descriptors to an open directory, or FILE handles or DIR handles that wrap such descriptors.

Returns true on success, otherwise false, an error string, and an integer system error.

rewinddir (dir)

Rewinds the DIR handle so the directory entries may be read again.

rmdir (path)
Remove the directory at path.

Returns true on success, otherwise false, an error string, and an integer system error.

23

S_ISBLK (mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a block
device.

Returns true or false.

S_ISCHR (mmode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a char-
acter device.

Returns true or false.

S_ISDIR (mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a di-
rectory.

Returns true or false.

S_ISFIFO (mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a FIFO
or pipe.

Returns true or false.

S_ISREG (mode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a regular
file.

Returns true or false.

S_ISLNK (mmode)

Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a sym-
bolic link.

Returns true or false.

S_ISSOCK (mode)
Tests whether the specified mode value—as returned by, e.g., stat or readdir—represents a socket.

Returns true or false.

send(file, datal, flags])

Sends data to the peer on the socket, file. file may be either a FILE handle or integer file
descriptor. flags is an optional integer containing bitwise socket send flags (e.g. MSG_NOSIGNAL).

24

Returns an integer representing the number of bytes sent (which may be less than #data) on success,
otherwise nil, an error string, and an integer system error.
sendto(file, data, flags, to_addr

Like send. to_addr is a sockaddr destination address or table convertible to a sockaddr

sendtofrom(file, data, flags, to_addr, from_addr)

Like send. to_addr is a sockaddr destination address or table convertible to a sockaddr, and
from_addr a sockaddr source address or table convertible to a sockaddr. See also the reciprocal
interface, recvfromto.

NOTES:

e Not all platforms support this interface. AIX (confirmed 7.1), NetBSD (confirmed 7.0), and
OpenBSD = 6.0 (confirmed 6.0) support IPv6 but not IPv4.

e FreeBSD (confirmed 10.1) requires the socket to be bound to the wildcard address, “0.0.0.0”
or “:”.

e macOS 10.10 and several prior releases contain a kernel bug which causes a kernel panic
if the socket address is not bound as required by FreeBSD. (Oddly macOS copied Linux’s
IP_PKTINFO interface, not FreeBSD’s IP_SENDSRCADDR; but Linux doesn’t have the require-
ment to bind).

setegid(gid)
Set the effective process GID to gid. gid must be an integer or symbolic group name.

Returns true on success, otherwise false, an error string, and an integer system error.

seteuid (uid)
Set the effective process UID to uid. uitd must be an integer or symbolic user name.

Returns true on success, otherwise false, an error string, and an integer system error.

setenv(name, valuel, overwrite])

Sets the environment variable name to value. If the variable already exists then it is not changed
unless overwrite is true. overwrite defaults to true.

Returns true on success, otherwise false, an error string, and an integer system error.

This function is thread-safe on Solaris and NetBSD. For Linux/glibc see note at getenv. FreeBSD,
OpenBSD, and Linuz/musl are confirmed to be not thread-safe. The status of AIX and OS X is
unknown. In general setenv should be avoided in multi-threaded environments.

25

setgid(gid)
Set the real process GID to gid. gid must be an integer or symbolic group name.

Returns true on success, otherwise false, an error string, and an integer system error.

setgroups{ ...}

Sets the supplement group list. Takes an array of GIDs. On success returns true. Otherwise
returns false, an error string, and an integer system error.

As an extension, group names may be specified instead of integer GIDs. However, an unresolvable
group name currently causes an error to be thrown rather than returned. Until this is fixed, use
getgrnam to explicitly resolve names to GIDs.

setlocale(category [, localel)

Set or query the program locale. category is an integer constant which specifies the category of
localization, and should be one of LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, or
LC_TIME.

locale can be either a string identifier for the locale, or nil to query the specified category. An
empty locale string selects the system’s native locale.

Returns a locale string identifier on success, otherwise nil if the specified category and locale could
not be honored.

setlogmask (mask)

Set the log priority mask for the current process. mask is an integer bitmask derived by applying
LOG_MASK or LOG_UPTO to priority constants.

setpgid(pid, pgid)

FIXME.

setrlimit(what[, softl[, hard])
FIXME.

setsid()

Create a new session and process group.

Returns the new process group ID on success, otherwise nil, an error string, and an integer system
error.

setsockopt (fd, level, optname, optval)

FIXME.

26

setuid (uid)
Set the real process UID to uid. uid must be an integer or symbolic user name.

Returns true on success, otherwise false, an error string, and an integer system error.

shutdown(fd, how)
FIXME.

sigaction(signo, [action], [oaction])
Sets or queries the signal disposition for the signal signo.

If specified, action is a table used to update the signal disposition.

.handler
Currently handler may only be SIG_DFL, SIG_ERR, or SIG_IGN. Lua functions are not currently
supported, but may in the future. In the meantime, applications can use sigtimedwait to
atomically dequeue signals in a thread-safe manner.

.mask

A sigset_t userdata object, or the string “*”

(see sigfillset).

.flags
Bitwise or of one or more of SA_NOCLDSTOP, SA_.ONSTACK, SA_ RESETHAND, SA_RESTART,
SA_SIGINFO, SA_NOCLDWAIT, and SA_NODEFER.

Returns true on success if oaction is nil or false.

Returns a table on success if oaction is true. The table describes the signal disposition at the time
sigaction was initially called.

Otherwise returns nil, an error string, and an integer system error.

sigfillset([set])

Returns a sigset_t userdata object with all bits filled. If set is specified should be an existing sigset_t
userdata object to reuse.

sigemptyset ([set])

Returns a sigset_t userdata object with all bits cleared. If set is specified should be an existing
sigset_t userdata object to reuse.

sigaddset(set[, signo ...]1)

Returns a sigset_t userdata object with the specified signals set. If set is not a sigset_t object, a
new, empty sigset_t is instantiated and initialized according to whether set is nil, an integer signal
number, an array of integer signal numbers, or the string “*” (filled) or “” (empty). If specified,
signo and additional arguments should be integer signal numbers to be added to the sigset_t object.

27

sigdelset(set[, signo ...])

Like sigaddset, but signo and subsequent integer signal numbers are cleared from the sigset_t
object.

sigismember (set, signo)

Returns true if signo is a member of sigset_t set, otherwise false.

sigprocmask([how, set[, oset]l])

If how and set are defined, sets the signal mask of the current process or thread. how should be
one of SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK. set should be a sigset_t userdata object, or a
number, string, or array suitable for initializing a sigset_t object as discussed in sigaddset.

Returns the old mask as a sigset_t userdata object on success, otherwise nil, an error string, and
an integer system error. oset is an optional sigset_t userdata object to be reused as the return
value, and is first cleared before passing to the system call.

Whether the process or thread mask is set is implementation defined, and varies across platforms.
Threaded applications should use pthread_sigmask, which is guaranteed to set the mask of the
current thread.® Unfortunately, there is no interface which is guaranteed to only set the process
mask. New threads inherit the mask of the creating thread, so standard practice is typically to block
everything in the main thread while creating new threads.

sigtimedwait (set[, timeout])

Atomically clears any pending signal specified in set from the pending set of the process and thread.
If none are pending, waits for timeout seconds, or indefinitely if timeout is not specified. Fractional
seconds are supported.

On success returns an integer signal number cleared from the pending set and an array representing
the members of the siginfo_t structure (without the “si_” prefix).” On error returns nil, an error
string, and an integer system error. If timeout is specified and no signal was cleared before the
timeout, the system error will be ETIMEDOUT.

OS X and OpenBSD lack a native sigtimedwatt implementation. On OS X luniz uses sigpending
and sigwait to emulate the behavior. However, in a multi-threaded application if another thread
clears a signal between sigpending and sigwait then sigwatit could block indefinitely. There’s no
way to solve this race condition.'® On OpenBSD sigwait is only available through libpthread, but
on OpenBSD libpthread must be loaded at process load—time and cannot be brought in as a dlopen
run—time dependency. Therefore an alternative emulation is used which clears the pending signal by
installing a noop signal handler. This is not thread-safe if another thread is also installing a signal

8Use of pthread_sigmask requires linking with —Ipthread on some platforms and for this reason is presently not
supported by lunix.

9Currently only the .si_signo member is copied from siginfo_t.

00ne possible solution is to explicitly raise the signal before calling sigpending, but this solutions relies on
untested assumptions about signal handling on these platforms.

28

handler simultaneously. Threaded applications on these platforms should be mindful of these limi-
tations. The cqueues project supports thread-safe signal listening with kqueue on both OpenBSD
and Mac OS X.

sigwait (set)

FIXME.

sleep(n)
FIXME.

socket (family, socktype, protocol)
FIXME.

socketpair(family, socktype, protocol)
FIXME.

stat (path| fileldir| fd[, field ...1)

Stats the specified file. Caller may specify a path string, a Lua FILE handle, a DIR handle (see
opendir), or an integer descriptor.

If no field arguments are specified, on success returns a table with the following fields
.dev
Device identifier as integer of device containing file.

.ino
Inode identifier as integer.

.mode
Mode—type, permissions, etc—as integer.

.nlink
Link count as integer.

.uid
Owner UID as integer.

.gid
Owner GID as integer.

.rdev
Device identifer as integer if character or block special file.

.size
File size as integer.

29

.atime
Last data access timestamp as floating-point number with sub-second fractional component'!.

.mtime
Last data modification timestamp as floating-point number with sub-second fractional com-
ponent.

.ctime
Last file status change timestamp as floating-point number with sub-second fractional com-
ponent.

.blksize
File-system-specified preferred I1/O block size as integer.

.blocks
Number of blocks allocated for this object as integer.

If field arguments are given, on success each field specified (as named above) is returned as part of
the return value list. Note that the return value may be nil if the value was unavailable.

On error returns nil, an error string, and an integer system error.

strerror (error)

Returns an error string corresponding to the specified system error integer.

strsignal (signo)

Returns a string describing the specified signal number.

symlink (pathl, path2)
Creates a new directory entry at path2 as a symbolic link to pathl.

Returns true on success, otherwise false, an error string, and an integer system error.

symlinkat (pathl, atfd, path2)

Like symlink, but path?2 is resolved relative to atfd.

sysconf (name)

FIXME.

syslog(priority, message)

Send string message to system’s logging facility. priority is an integer flag (see setlogmask) and
message a string (not a format string).

ANl platforms currently support timestamps with sub-second precision. However, the underlying filesystem may
not record a timestamp with sub-second precision.

30

tcgetpgrp (file)
FIXME.

tcgetsid(fd)
FIXME.

tcsetpgrp(file, pgid)
FIXME.

timegm(tm)

tm is a table of the form returned by the Lua routine os.date("*t"). This allows converting a
datetime in GMT directly to a POSIX timestamp without having to change the process timezone,
which is inherently non-thread-safe.

Returns a POSIX timestamp as a Lua number.

truncate(file[, sizel)

Truncate file to size bytes (defaults to 0). file should be a string path, or FILE handle or integer
file descriptor.

Returns true on success, otherwise false, an error string, and an integer system error.

tzset ()
Initializes datetime conversion information according to the TZ environment variable, if available.

Return true.

umask ([cmask])

If emask is specified, sets the process file creation mask and returns the previous mask as a Lua
number.

If emask is not specified, queries the process umask in a thread-safe manner and returns the mask
as a Lua number.
uname ([...])

If no arguments are given, on success returns a table with the following fields

.sysname
Name of the current system as a string.

.nodename
Name of this node within an implementation-defined communications network as a string.

31

.release
Release name of the operating system as a string.

.version
Version of the operating system as a string.

.machine
Hardware description of the system as a string.

If additional arguments are given, on success each field specified (as named above) is returned as
part of the return value list.

On failure returns nil, an error string, and an integer system error.

unlink(path)
Deletes the file entry at path.

Returns true on success, otherwise false, an error string, and an integer system error.

unlinkat (file|ldir| fd, pathl[, flags])

Deletes the file entry at path relative to the specified open directory file descriptor, fd, or a FILE
handle or DIR handle that wraps such a descriptor.

Returns true on success, otherwise false, an error string, and an integer system error.

unlockpt (file)
FIXME.

unsetenv(name)

Deletes the environment variable name from the environment table.

Returns true on success, otherwise false, an error string, and an integer system error.

This function is thread-safe on Solaris, NetBSD, and Linuz/glibc. But see note at getenv. Also
see note at setenv. In general unsetenv should be avoided in multi-threaded environments.
wait ([pid] [, options])

FIXME.

waitpid([pid] [, options])
FIXME.

32

write(file, data)

Writes data to file. file may be either a FILE handle or integer file descriptor.

Returns an integer representing the number of bytes written (which may be less than #data) on
success, otherwise nil, an error string, and an integer system error.

xor(x, y)

FIXME.

4.1.2 unix.dir

The unix.dir module implements the prototype for DIR handles, as returned by unix.opendir.

dir:files([field ...1)

Returns an iterator over unix.readdir(...).

dir:read([field ...1)

Identical to unix.readdir.

dir:rewind()

Identical to unix.rewinddir.

dir:close()

Identical to unix.closedir.

4.1.3 unix.unsafe

The unix.unsafe module binds routines that can take or return pointers. Pointer arguments might
be taken directly as lightuserdata or integers (intptr_t), or indirectly as a string, depending on the
routine. In the latter case, if it’s not known whether a syscall might write through a pointer (e.g.
fentl, getsockopt), a string argument will be copied into an internal buffer, a pointer to this
buffer passed to the routine, and then the contents of this buffer (possibly modified) returned as a
string to the caller in the return list; otherwise (e.g. strlen) a pointer to the string obtained via
lua_tostring is passed.

calloc(count, size)

FIXME

fentl(fd, emd[, argl)
FIXME

33

fmemopen (addr, size, mode)

FIXME

free(addr)
FIXME

getsockopt (fd, level, optname, arg)
FIXME

ioctl(fd, cmd, arg)
FIXME

malloc(size)

FIXME

memcpy (dst, src, size)

FIXME

memset (addr, c, len)

FIXME

mlock(addr, len)
FIXME

mlockall(flags)
FIXME

mmap (addr, len, prot, flags, fd, of fset)
FIXME

munlock(addr, len)

FIXME

munlockall ()
FIXME

munmap (addr, len)

FIXME

34

realloc(addr, size)

FIXME

reallocarray(addr, count, size)

FIXME

setsockopt (fd, level, optname, arg)

FIXME

strlen(addr)
FIXME

strlen(addr, maxlen)

FIXME

35

10

12

14

16

18

20

5 Appendix

5.1 setrecvaddr: Prepare socket for recvfromto

A routine to set the socket options necessary for recvfromto. Options should be set before binding
the socket to an address as on some platforms (e.g. FreeBSD) any packets received beforehand will
not be tagged with the destination address.

local unix = require"unix"

local function setrecvaddr (fd, family)
local type, level

if family == unix.AF_INET6 then
level = unix.IPPROTO_IPV6
type = unix.IPV6_RECVPKTINFO or unix.IPV6_PKTINFO
elseif family == unix.AF_INET
level = unix.IPPROTO_IP
type = unix.IP_RECVDSTADDR or unix.IP_PKTINFO
end

if level and type then
return unix.setsockopt(fd, level, type, true)
else
local errno = unix.EAFNOSUPPORT
return false, unix.strerror(errno), errno
end
end

36

10

12

14

16

18

20

22

24

5.2 strevents: Stringify poll events

A routine to translate an integer bitfield of poll events to a string of constant names.

local unix = require"unix"

local function strconst(c, patt)
for k,v in pairs(unix) do

if ¢ == v and type(k) == "string"

return k
end
end
end

local function strevent (event)
return strconst (event, "“POLL")
end

local function strevents(events)
local t = {}
for i=0,30 do
if events % 2 == 1 then
t[#t + 1] = strevent(271i)
events = events - 1
end
events = events / 2
end

return #t > 0 and table.concat(t,

end

"ou") or nil

37

and k:match(patt) then

	Contents
	About
	Dependencies
	Operating Systems
	Libraries
	Lua 5.1, 5.2, 5.3

	GNU Make

	Installation
	Building
	Targets

	Installing
	Targets

	Usage
	Modules
	unix
	environ[]
	accept
	access
	alarm
	arc4random
	arc4random_buf
	arc4random_stir
	arc4random_uniform
	bind
	bitand
	bitor
	chdir
	chmod
	chown
	chroot
	clearerr
	clock_gettime
	close
	closedir
	closelog
	compl
	connect
	dup
	dup2
	dup3
	execve
	execl
	execlp
	execvp
	_exit
	exit
	faccessat
	fchmod
	fchown
	fcntl
	fdatasync
	fdopen
	fdopendir
	fdup
	feof
	ferror
	fgetc
	fileno
	flockfile
	fnmatch
	fstat
	fstatat
	fsync
	ftrylockfile
	funlockfile
	fopen
	fopenat
	fpathconf
	fpipe
	fork
	gai_strerror
	getaddrinfo
	getc
	getcwd
	getegid
	getenv
	geteuid
	getgid
	getgrgid
	getgrnam
	getgroups
	gethostname
	getifaddrs
	getmode
	getnameinfo
	getopt
	getpeername
	getpgid
	getpgrp
	getpid
	getppid
	getprogname
	getpwnam
	getpwuid
	getrlimit
	getrusage
	getsockname
	gettimeofday
	getuid
	grantpt
	ioctl
	isatty
	issetugid
	kill
	LOG_MASK
	LOG_UPTO
	lchown
	link
	listen
	lockf
	lseek
	lstat
	mkdir
	mkdirat
	mkfifo
	mkfifoat
	mkpath
	open
	openat
	opendir
	openlog
	pathconf
	pipe
	poll
	posix_fadvise
	posix_fallocate
	posix_openpt
	posix_fopenpt
	pread
	ptsname
	pwrite
	raise
	read
	readdir
	readlink
	readlinkat
	realpath
	recv
	recvfrom
	recvfromto
	regcomp
	regerror
	regexec
	regfree
	rename
	renameat
	rewinddir
	rmdir
	S_ISBLK
	S_ISCHR
	S_ISDIR
	S_ISFIFO
	S_ISREG
	S_ISLNK
	S_ISSOCK
	send
	sendto
	sendtofrom
	setegid
	seteuid
	setenv
	setgid
	setgroups
	setlocale
	setlogmask
	setpgid
	setrlimit
	setsid
	setsockopt
	setuid
	shutdown
	sigaction
	sigfillset
	sigemptyset
	sigaddset
	sigdelset
	sigismember
	sigprocmask
	sigtimedwait
	sigwait
	sleep
	socket
	socketpair
	stat
	strerror
	strsignal
	symlink
	symlinkat
	sysconf
	syslog
	tcgetpgrp
	tcgetsid
	tcsetpgrp
	timegm
	truncate
	tzset
	umask
	uname
	unlink
	unlinkat
	unlockpt
	unsetenv
	wait
	waitpid
	write
	xor

	unix.dir
	dir:files
	dir:read
	dir:rewind
	dir:close

	unix.unsafe
	calloc
	fcntl
	fmemopen
	free
	getsockopt
	ioctl
	malloc
	memcpy
	memset
	mlock
	mlockall
	mmap
	munlock
	munlockall
	munmap
	realloc
	reallocarray
	setsockopt
	strlen
	strnlen

	Appendix
	setrecvaddr
	strevents

